INTERNATIONAL A LEVEL

Pure Mathematics 2

Exercise 2F

1 a $U(-2,8), V(7,7)$ and $W(-3,-1)$
$U V^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}$
$=(7+2)^{2}+(7-8)^{2}$
$=82$
$V W^{2}=(-3-7)^{2}+(-1-7)^{2}$
$=164$
$U W^{2}=(-3+2)^{2}+(-1-8)^{2}$

$$
=82
$$

Use Pythagoras' theorem to show $U V^{2}+U W^{2}=V W^{2}$
$82+82=164=V W^{2}$
Therefore, $U V W$ is a right-angled triangle.
b $U V W$ is a right-angled triangle, therefore $V W$ is the diameter of the circle.
Centre of circle $=$ Midpoint of $V W$
Midpoint $=\left(\frac{7+(-3)}{2}, \frac{7+(-1)}{2}\right)=(2,3)$
c Radius of the circle is $\frac{1}{2}$ of $V W=\frac{\sqrt{164}}{2}=\sqrt{\frac{164}{4}}=\sqrt{41}$
$(x-2)^{2}+(y-3)^{2}=41$
2 a $A(2,6), B(5,7)$ and $C(8,-2)$
Use Pythagoras' theorem to show $A B^{2}+B C^{2}=A C^{2}$
$A B^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}=(5-2)^{2}+(7-6)^{2}=10$
$B C^{2}=(8-5)^{2}+(-2-7)^{2}=90$
$A C^{2}=(8-2)^{2}+(-2-6)^{2}=100$
Therefore, $A B C$ is a right-angled triangle and $A C$ is the diameter of the circle.
b Centre of circle $=$ Midpoint of $A C$
Midpoint $=\left(\frac{2+8}{2}, \frac{6+(-2)}{2}\right)=(5,2)$
Radius of the circle is $\frac{1}{2}$ of $A C=\frac{\sqrt{100}}{2}=5$
$(x-5)^{2}+(y-2)^{2}=25$
c Base of triangle $=A B=\sqrt{10}$ units
Height of triangle $=B C=\sqrt{90}$ units
Area of triangle $A B C=\frac{1}{2} \times \sqrt{10} \times \sqrt{90}=15$ units 2

Pure Mathematics 2

3 a i $A(-3,19)$ and $B(9,11)$
Midpoint $=\left(\frac{-3+9}{2}, \frac{19+11}{2}\right)=(3,15)$
The gradient of the line segment $A B=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{11-19}{9-(-3)}=-\frac{2}{3}$
So the gradient of the line perpendicular to AB is $\frac{3}{2}$.
The equation of the perpendicular line is

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& m=\frac{3}{2} \text { and }\left(x_{1}, y_{1}\right)=(3,15) \\
& \text { So } y-15=\frac{3}{2}(x-3) \\
& y=\frac{3}{2} x+\frac{21}{2}
\end{aligned}
$$

ii $A(-3,19)$ and $C(-15,1)$
Midpoint $=\left(\frac{-3-15}{2}, \frac{19+1}{2}\right)=(-9,10)$
The gradient of the line segment $A C=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{1-19}{-15+3}=\frac{3}{2}$
So the gradient of the line perpendicular to $A C$ is $-\frac{2}{3}$.
The equation of the perpendicular line is

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& m=-\frac{2}{3} \text { and }\left(x_{1}, y_{1}\right)=(-9,10) \\
& \text { So } y-10=-\frac{2}{3}(x+9) \\
& \qquad y=-\frac{2}{3} x+4
\end{aligned}
$$

b Solve $y=\frac{3}{2} x+\frac{21}{2}$ and $y=-\frac{2}{3} x+4$ simultaneously

$$
\begin{aligned}
\frac{3}{2} x+\frac{21}{2} & =-\frac{2}{3} x+4 \\
9 x+63 & =-4 x+24 \\
13 x & =-39 \\
x=-3, y & =-\frac{2}{3}(-3)+4=6
\end{aligned}
$$

So, the coordinates of the centre of the circle are $(-3,6)$
c Radius $=$ distance from $(-3,6)$ to $(9,11)$
$\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=\sqrt{(9+3)^{2}+(11-6)^{2}}=\sqrt{12^{2}+5^{2}}=13$
$(x+3)^{2}+(y-6)^{2}=169$

Pure Mathematics 2

4 a i $P(-11,8)$ and $Q(-6,-7)$
Midpoint $=\left(\frac{-11-6}{2}, \frac{8-7}{2}\right)=\left(-\frac{17}{2}, \frac{1}{2}\right)$
The gradient of the line segment $P Q=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-7-8}{-6+11}=-3$
So the gradient of the line perpendicular to $P Q$ is $\frac{1}{3}$.
The equation of the perpendicular line is

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& m=\frac{1}{3} \text { and }\left(x_{1}, y_{1}\right)=\left(-\frac{17}{2}, \frac{1}{2}\right) \\
& \text { So } y-\frac{1}{2}=\frac{1}{3}\left(x+\frac{17}{2}\right) \\
& y=\frac{1}{3} x+\frac{10}{3}
\end{aligned}
$$

ii $Q(-6,-7)$ and $R(4,-7)$
$Q R$ is the line $y=-7$.
Midpoint $=\left(\frac{-6+4}{2}, \frac{-7-7}{2}\right)=(-1,-7)$
The equation of the perpendicular line is $x=-1$.
b Solve $y=\frac{1}{3} x+\frac{10}{3}$ and $x=-1$ simultaneously to find the centre of the circle:

$$
\begin{aligned}
\frac{1}{3}(-1)+\frac{10}{3} & =y \\
y & =3
\end{aligned}
$$

The centre of the circle is $(-1,3)$
Radius $=$ distance from $(-1,3)$ to $(4,-7)$

$$
\begin{aligned}
\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} & =\sqrt{(4+1)^{2}+(-7-3)^{2}}=\sqrt{125} \\
(x+1)^{2}+(y-3)^{2} & =125
\end{aligned}
$$

Pure Mathematics 2

$5 \quad R(-2,1)$ and $S(4,3)$
Midpoint $=\left(\frac{-2+4}{2}, \frac{1+3}{2}\right)=(1,2)$
The gradient of the line segment $R S=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3-1}{4+2}=\frac{1}{3}$
So the gradient of the line perpendicular to $R S$ is -3 .
The equation of the perpendicular line is

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& m=-3 \text { and }\left(x_{1}, y_{1}\right)=(1,2)
\end{aligned}
$$

$$
\text { So } y-2=-3(x-1)
$$

$$
y=-3 x+5
$$

$S(4,3)$ and $T(10,-5)$
Midpoint $=\left(\frac{4+10}{2}, \frac{3-5}{2}\right)=(7,-1)$
The gradient of the line segment $S T=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-5-3}{10-4}=-\frac{4}{3}$
So the gradient of the line perpendicular to $S T$ is $\frac{3}{4}$.
The equation of the perpendicular line is

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& m=\frac{3}{4} \text { and }\left(x_{1}, y_{1}\right)=(7,-1) \\
& \text { So } y+1=\frac{3}{4}(x-7) \\
& \quad y=\frac{3}{4} x-\frac{25}{4}
\end{aligned}
$$

Solve $y=-3 x+5$ and $y=\frac{3}{4} x-\frac{25}{4}$ simultaneously

$$
\begin{aligned}
-3 x+5 & =\frac{3}{4} x-\frac{25}{4} \\
-12 x+20 & =3 x-25 \\
15 x & =45
\end{aligned}
$$

$$
x=3, y=-3(3)+5=-4
$$

So the centre of the circle is $(3,-4)$
Radius $=$ distance from centre $(3,-4)$ to $(-2,1)$

$$
\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=\sqrt{(-2-3)^{2}+(1+4)^{2}}=\sqrt{50}
$$

The equation of the circle is $(x-3)^{2}+(y+4)^{2}=50$

Pure Mathematics 2

6 a $A(3,15), B(-13,3)$ and $C(-7,-5)$
Using Pythagoras' theorem $A B^{2}+B C^{2}=A C^{2}$
$A B^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}=(-13-3)^{2}+(3-15)^{2}=256+144=400$
$B C^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}=(-7+13)^{2}+(-5-3)^{2}=36+64=100$
$A C^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}=(-7-3)^{2}+(-5-15)^{2}=100+400=500$
Therefore $A B C$ is a right-angled triangle.
b Centre of circle $=$ midpoint of $A C=\left(\frac{3-7}{2}, \frac{15-5}{2}\right)=(-2,5)$
Radius $=\frac{1}{2}$ of $A C=\frac{1}{2}$ of $\sqrt{500}=\frac{10 \sqrt{5}}{2}=5 \sqrt{5}$
Equation of circle: $(x+2)^{2}+(y-5)^{2}=(5 \sqrt{5})^{2}$ or $(x+2)^{2}+(y-5)^{2}=125$
c We know that A, B and C all lie on the circumference of the circle.
$D(8,0)$, substitute $x=8$ and $y=0$ into the equation of the circle:
$(8+2)^{2}+(0-5)^{2}=100+25=125$
Therefore, $D(8,0)$ lies on the circumference of the circle $(x+2)^{2}+(y-5)^{2}=125$

Pure Mathematics 2

7 a $A(-1,9), B(6,10), C(7,3), D(0,2)$
The length of $A B$ is
$\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=\sqrt{(6-(-1))^{2}+(10-9)^{2}}=\sqrt{7^{2}+1^{2}}=\sqrt{49+1}=\sqrt{50}$
The length of $B C$ is
$\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=\sqrt{(7-6)^{2}+(3-10)^{2}}=\sqrt{1^{2}+(-7)^{2}}=\sqrt{1+49}=\sqrt{50}$
The length of $C D$ is
$\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=\sqrt{(0-7)^{2}+(2-3)^{2}}=\sqrt{(-7)^{2}+(-1)^{2}}=\sqrt{49+1}=\sqrt{50}$
The length of $D A$ is
$\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=\sqrt{(-1-0)^{2}+(9-2)^{2}}=\sqrt{(-1)^{2}+7^{2}}=\sqrt{1+49}=\sqrt{50}$
The sides of the quadrilateral are equal.
The gradient of $A B$ is
$\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{10-9}{6-(-1)}=\frac{1}{7}$
The gradient of $B C$ is
$\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3-10}{7-6}=\frac{-7}{1}=-7$
The product of the gradients $=\left(\frac{1}{7} \times-7\right)=-1$.
So the line $A B$ is perpendicular to $B C$.
So the quadrilateral $A B C D$ is a square.
b The area $=\sqrt{50} \times \sqrt{50}=50$
c The mid-point of $A C$ is
$\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)=\left(\frac{-1+7}{2}, \frac{9+3}{2}\right)=\left(\frac{6}{2}, \frac{12}{2}\right)=(3,6)$
So the centre of the circle is $(3,6)$.

Pure Mathematics 2

8 a $D(-12,-3), E(-10, \mathrm{~b}), F(2,-5)$
Using Pythagoras' theorem $D E^{2}+E F^{2}=D F^{2}$
$D E^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}$

$$
=(-10+12)^{2}+(b+3)^{2}
$$

$$
=4+b^{2}+6 b+9
$$

$$
=b^{2}+6 b+13
$$

$E F^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}$
$=(2+10)^{2}+(-5-b)^{2}$
$=144+b^{2}+10 b+25$
$=b^{2}+10 b+169$
$D F^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}$
$=(2+12)^{2}+(-5+3)^{2}$
$=196+4$
$=200$
$b^{2}+6 b+13+b^{2}+10 b+169=200$

$$
\begin{aligned}
2 b^{2}+16 b-18 & =0 \\
b^{2}+8 b-9 & =0 \\
(b+9)(b-1) & =0
\end{aligned}
$$

$b=-9$ or $b=1$
As $b>0, b=1$.
b Centre of circle $=$ midpoint of $D F=\left(\frac{-12+2}{2}, \frac{-3-5}{2}\right)=(-5,-4)$
Distance of radius $=\frac{1}{2}$ of $D F=\frac{1}{2}$ of $\sqrt{200}=\frac{10 \sqrt{2}}{2}=5 \sqrt{2}$
Equation of circle: $(x+5)^{2}+(y+4)^{2}=(5 \sqrt{2})^{2}=50$
9 a $x^{2}+2 x+y^{2}-24 y-24=0$
Completing the square gives:
$(x+1)^{2}-1+(y-12)^{2}-144-24=0$

$$
(x+1)^{2}+(y-12)^{2}=169
$$

Centre of the circle is $(-1,12)$ and the radius of the circle is 13 .
b If $A B$ is the diameter of the circle then the midpoint of AB is the centre of the circle.
Midpoint of $A B=\left(\frac{-13+11}{2}, \frac{17+7}{2}\right)=(-1,12)$
Therefore, $A B$ is the diameter of the circle.
c The point C lies on the x-axis, so $y=0$.
Substitute $y=0$ into the equation of the circle.

$$
\begin{aligned}
& (x+1)^{2}+(0-12)^{2}=169 \\
& x^{2}+2 x+1+144=169 \\
& x^{2}+2 x-24=0 \\
& (x+6)(x-4)=0 \\
& x=-6, x=4 \\
& \text { As } x \text { is negative, } x=-6 \\
& \text { The coordinates of } C \text { are }(-6,0)
\end{aligned}
$$

